Anar al contingut (clic a Intro)
UdG Home UdG Home
UdG 30 anys
Tancar
Menú

Estudia a la UdG

Dades generals

Curs acadèmic:
2021
Descripció:
Models lineals múltiples. Contrastos no paramètrics. Anàlisi descriptiva multivariable aplicada a la experimentació biològica: ordenació i classificació
Crèdits ECTS:
6

Grups

Grup CA

Durada:
Semestral, 1r semestre
Professorat:
MARIA TERESA ANTON PARDO  / JOAN PERE CASAS RUIZ  / JORDI COMPTE CIURANA  / ESTEFANIA GASCON GARCIA  / ANNA VILA GISPERT
Idioma de les classes:
Català (75%), Anglès (25%)

Competències

  • Capacitat per analitzar críticament a partir de la recollida d'informació i la interpretació de dades , situacions complexes i dissenyar estratègies creatives i innovadores per resoldre-les
  • Saber comunicar-se oralment i per escrit en l'àmbit científic i professional , utilitzant les llengües pròpies i l'anglès
  • Utilitzar i aplicar de forma segura la instrumentació i les metodologies experimentals pròpies de la disciplina
  • Utilitzar programes informàtics específics per al tractament complex de dades

Continguts

1. Introducció

2. Models lineal múltiples

3. Contrastos no paramètrics

4. Anàlisi multivariable

          4.1. Anàlisi exploratori de dades

          4.2. Mesures d'associació i matrius

          4.3. Anàlisi de Classificació

          4.4. Anàlisi d'Ordenació

Activitats

Tipus d’activitat Hores amb professor Hores sense professor Hores virtuals amb professor Total
Prova d'avaluació 6,00 30,00 0 36,00
Resolució d'exercicis 11,00 30,00 0 41,00
Sessió expositiva 35,00 40,00 0 75,00
Total 52,00 100,00 0 152

Bibliografia

  • Zar, Jerrold H (cop. 1999 ). Biostatistical analysis (4th ed.). London: Prentice-Hall International. Catàleg
  • Gotelli, Nicholas J (cop. 2004 ). A Primer of ecological statistics . Sunderland: Sinauer Associates. Catàleg
  • Quinn, Gerry P (2002 ). Experimental design and data analysis for biologists . Cambridge: Cambridge University Press. Catàleg
  • Legendre, Pierre (1998 ). Numerical ecology (2nd english ed.). Amsterdam [etc.]: Elsevier. Catàleg
  • Leps, Jan (2003 ). Multivariate analysis of ecological data using CANOCO . Cambridge: Cambridge University Press. Catàleg
  • Tabachnick, Barbara G (cop. 2001 ). Using multivariate statistics (4th ed). Boston: Allyn and Bacon. Catàleg
  • Crawley, Michael J (cop. 2007 ). The R book . New York: John Wiley & Sons. Catàleg

Avaluació i qualificació

Activitats d'avaluació:

Descripció de l'activitat Avaluació de l'activitat % Recuperable
Resolució d'exercicis pràctics corresponents a les classes d'R i teoria
.Es tracta de realitzar uns exercicis pràctics de manera individual vinculats a les diferents sessions a l'aula d'informàtica.
La nota final d'aquesta activitat s'obtindrà de la mitjana de 2 exercicis agafat a l'atzar de tots els realitzats (1 per cada bloc de l'assignatura). Aquesta activitat NO ES RECUPERABLE

Important: S'hauran d'entregar tots els exercicis, ja que si no es fa es penalitzarà restant 0.5 punts per cada exercici no realitzat i/o entregat fora de termini a la nota final d'aquesta activitat.
30 No
Examen de teoria del bloc I (anàlisis univariants): realització d'una prova d'avaluació corresponent al temari del bloc de continguts d'anàlisis univariants. Si la prova no supera el 5 sobre 10, no es podrà superar aquest bloc de l'assignatura i caldrà anar a la prova de recuperació de la part del bloc I que es realitzarà en el període de recuperacions.

El bloc quedarà superat si la nota és superior o igual a 5.

35
Examen de teoria del bloc II (anàlisis multivariants):realització d'una prova d'avaluació dels continguts del segon bloc de l'assignatura Si la prova no supera el 5 sobre 10, no es podrà superar aquest bloc de l'assignatura i caldrà anar a la prova de recuperació de la part del bloc II que es realitzarà en el període de recuperacions.

El bloc quedarà superat si la nota és superior o igual a 5.
35

Qualificació

La nota final de l'assignatura serà la corresponent a tenir en compte la nota dels blocs i la de resolució d'exercicis, en la proporció indicada. Ara bé, per a fer aquest càlcul cal haver superat (5 o superior) les proves d'avaluació de cada bloc per separat, si això no passa l'assignatura quedarà suspesa. L'assignatura es considerarà superada si la nota obtinguda després d'aquest càlcul (considerant les proves d'avaluació dels blocs i els exercicis d'R) és superior o igual a 5 sobre 10.

Es podrà recuperar la nota dels blocs en el període dels exàmens de recuperació. Només podran anar a recuperació els alumnes que hagin suspès alguna o les dues proves anteriors.


Per a la qualificació definitiva de l'alumne el professor pot tenir en compte, a més de la suma de qualificacions, altres aspectes que consideri convenients (participació a classe, realització de treballs voluntaris, puntualitat en la tramesa de les tasques, etc).

Criteris específics de la nota «No Presentat»:
Qualsevol activitat d'avaluació no presentada tindrà la qualificació de 0. Una qualificació final de NP (no presentat) s'obtindrà només quan l'alumne no participi en cap de les activitats d'avaluació.

Avaluació única:
En cas de realitzar avaluació única, aquesta constarà d'una única prova que valdrà el 100% de la nota final, i que integrarà: 1)parts pràctiques, 2)conceptes teòrics (bloc I i II), i 3) una part de disseny i desenvolupament d'anàlisis de dades en el marc d'un estudi biològic.

Per superar l'assignatura caldrà un mínim de 5 sobre 10 com a resultat d'aquesta avaluació única.

Requisits mínims per aprovar:
Per considerar superada l’assignatura, caldrà obtenir una qualificació global mínima de 5.0 i haver superat per separat les proves d'avaluació dels blocs.

Tutoria

Les tutories, tant individuals com en grup, es faran en hores convingudes amb l'estudiant.

Per a sol·licitar una tutoria cal fer-ho demanant cita mitjançant el moodle.

Comunicacio i interacció amb l'estudiantat

La interacció via telemàtica amb els estudiants es farà utilitzant la plataforma del moodle.

L'entrega de tasques, els fòrums de discussió, o demanar dubtes o tutories es farà telemàticament utilitzant les eines disponibles al moodle de l'assignatura.

Observacions

L'estudiant matriculat podrà accedir a la intranet La Meva UdG on hi trobarà el programa detallat, la temporalització de l'assignatura, apunts referents a la teoria, problemes, pràctiques, els treballs pràctics proposats i altres recursos.

La web on es pot baixar el paquet estadístic R i diferents llibreries, així com fitxers explicatius i ajudes per cada llibreria:
http://www.r-project.org/


Assignatures recomanades

  • Estadística aplicada
  • Tècniques científiques integrades I

Modificació del disseny

Modificació de les activitats:
Escenari semipresencial
Totes les tasques i activitats seran entregades telemàticament.

En aquest escenari, les classes de grups mitjans d'R a l'aula d'informàtica passaran a ser presencials però les classes de teoria seran online.

Escenari tancament UdG
Tota la matèria i dubtes es farien de manera telemàtica.
Les pràctiques d'R s'hauran de fer de manera autònoma a distància i podran demanar tutories per resoldre els dubtes que puguin tenir.
Les diferents tasques i activitats a realitzar s'entregaran telemàticament, i les classes de dubtes i tutories es realitzaran mitjantçant el blackboard del moodle o similar.


Tractament estudiants vulnerables o amb confinament temporal
Totes les tasques i material de l'assignatura es posarà a disposició dels estudiants via moodle. Les diferents tasques i activitats a realitzar s'entreguen telemàticament, i les classes de dubtes i tutories es realitzaran mitjantçant el Google meet o similar. Les pràctiques d'R s'hauran de fer de manera autònoma a distància i podran demanar tutories per resoldre els dubtes que puguin tenir.

Modificació de l'avaluació:
Escenari semipresencial
Els exercicis d'R s'entregaran individualment via telemàtica (moodle) i valdran el 30% de la nota final. De tots els exercicis a entregar (un total de 9) s'escolliran 2 a l'atzar (un del bloc I i un altre del bloc II) que seran corregits. La mitjana d'aquests dos exercicis serà la nota final obtinguda per l'estudiant per aquesta activitat. L'activitat NO serà recuperable. Hi haurà una penalització de 0.5 punts per cada exercici no entregat correctament i en el termini establert.

Es realitzarà una prova d'avaluació independent per cada bloc (univariant i multivariant) durant el període d'avaluacions continuades. Si d'aquestes proves es treu un 5 o més, aquesta part de l'assignatura ja queda superada. Si és suspèn, llavors caldrà presentar-se a la prova de recuperació que tindrà lloc els dies de recuperacions. Cada avaluació de bloc val el 35% de la nota final i cal aprovar les dues per separat per poder fer mitjana amb la nota dels exercicis d'R i obtenir la nota final de l'assignatura. En cas de que després de la recuperació, no es superi un dels blocs, l'assignatura queda automàticament suspesa. Si les condicions ho permeten aquestes proves seran presencials, en cas contrari seran online via moodle.


Escenari tancament UdG
Es mantenen totes les proves d'avaluació, però es farien totes via telemàtica mitjançant el moodle.

Tractament estudiants vulnerables o amb confinament temporal
S'aplicarà el mateix que en l'escenari de tancament de l'UdG.

Tutoria i comunicació:
Escenari semipresencial
Es podran fer tutories presencials o telemàtiques en funció del que més convingui al professor o estudiant.
Tota la comunicació es farà via missatges moodle.

Escenari tancament UdG
Totes les tutories es faran telemàticament utilitzant Google meet o similar.
Tota la comunicació es farà via missatges moodle.

Tractament estudiants vulnerables o amb confinament temporal
Totes les tutories es faran telemàticament utilitzant Google meet o similar.
Tota la comunicació es farà via missatges moodle

Escull quins tipus de galetes acceptes que el web de la Universitat de Girona pugui guardar en el teu navegador.

Les imprescindibles per facilitar la vostra connexió. No hi ha opció d'inhabilitar-les, atès que són les necessàries pel funcionament del lloc web.

Permeten recordar les vostres opcions (per exemple llengua o regió des de la qual accediu), per tal de proporcionar-vos serveis avançats.

Proporcionen informació estadística i permeten millorar els serveis. Utilitzem cookies de Google Analytics que podeu desactivar instal·lant-vos aquest plugin.

Per a oferir continguts publicitaris relacionats amb els interessos de l'usuari, bé directament, bé per mitjà de tercers (“adservers”). Cal activar-les si vols veure els vídeos de Youtube incrustats en el web de la Universitat de Girona.