Instituts > Non-heme iron enzymes can be engineered for enantioselective C(sp3)-F bond formation via iron-mediat
Anar al contingut (clic a Intro)
UdG Home UdG Home

Institut de Química Computacional i Catàlisi

In recent years there has been a surge in the development of methods for the synthesis of organofluorine compounds. However, enzymatic methods for C–F bond formation have been limited to nucleophilic fluoride substitution. In a new work led by Prof. Xiongyi Huang (Johns Hopkins University, USA) and in collaboration with the group of Dr. Marc Garcia-Borràs (IQCC), they report the incorporation of iron-catalysed radical fluorine transfer, a reaction mechanism that is not used in naturally occurring enzymes, into enzymatic catalysis for the development of biocatalytic enantioselective C(sp3)–F bond formation. Using this strategy, the authors repurposed (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE) to catalyse an N-fluoroamide-directed C(sp3)–H fluorination. Directed evolution guided by mechanistic understanding and computational modeling has enabled SvHppE to be optimized, forming diverse chiral benzylic fluoride products with turnover numbers of up to 180 and with excellent enantiocontrol (up to 94% enantiomeric excess). Mechanistic investigations showed that the N–F bond activation is the rate-determining step, and the strong preference for fluorination in the presence of excess NaN3 can be attributed to the spatial proximity of the carbon-centred radical to the iron-bound fluoride, as suggested by the computational models.

Dr. Jordi Soler (Garcia-Borràs’ group) is the co-first author of this publication recently reported in the Nature Synthesis journal (Nat. Synth (2024). Dr. Garcia-Borràs is co-corresponding author of the study, which has been led by Prof. Xiongyi Huang from John Hopkins University. This work builds upon previous collaborative efforts, where the authors successfully incorporated a new radical-relay C(sp3)-H azidation reaction into a non-heme iron enzyme. This significant advancement was published in Science (2022, 376, 869-874, DOI: 10.1126/science.abj2830).

This project is a core part of the research program that Dr. Garcia-Borràs leads at the IQCC, which is devoted to the use of computational methods in combination with experiments to characterize and design new abiological enzymatic activities and synthetically useful biocatalysts: “Biocatalytic intermediates for the discovery and design of new enzymatic activities“.

It has been recently published open access in Nature Synthesis:

Q. Zhao‡, Z. Chen‡, J. Soler‡, X. Chen, J. Rui, N. T. Ji, Q. E. Yu, Y. Yang*, M. Garcia-Borràs*, X. Huang*(‡: These authors have equally contributed)
Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer
Nat. Synth., 2024, ASAP.
DOI: 10.1038/s44160-024-00507-7

Girona, May 10th, 2024
For more info:

Notícies relacionades

Escull quins tipus de galetes acceptes que el web de la Universitat de Girona pugui guardar en el teu navegador.

Les imprescindibles per facilitar la vostra connexió. No hi ha opció d'inhabilitar-les, atès que són les necessàries pel funcionament del lloc web.

Permeten recordar les vostres opcions (per exemple llengua o regió des de la qual accediu), per tal de proporcionar-vos serveis avançats.

Proporcionen informació estadística i permeten millorar els serveis. Utilitzem cookies de Google Analytics que podeu desactivar instal·lant-vos aquest plugin.

Per a oferir continguts publicitaris relacionats amb els interessos de l'usuari, bé directament, bé per mitjà de tercers (“adservers”). Cal activar-les si vols veure els vídeos de Youtube incrustats en el web de la Universitat de Girona.