

$I_{syn} = g_{syn} \, \mathbf{s} \, \mathbf{P_{rel}} \, (V - V_{syn})$: Neurotransmissió específica

Dinamica mononeuronal

• Excitació ràpida: Neuroreceptors AMPA: $\tau = 2 \text{ ms}, V_{syn} = 0 \text{mV}$

Neurotransmissió: comunicació entre neurones

• Inhibició: Neuroreceptors GABA: $\tau = 10 \text{ ms}, V_{syn} = -70 \text{mV}$

$I_{syn} = g_{syn} \, \mathbf{s} \, \mathbf{P_{rel}} \, (V - V_{syn})$: Neurotransmissió específica

Dinamica mononeuronal

• Excitació ràpida: Neuroreceptors AMPA: $\tau = 2 \text{ ms}, V_{syn} = 0 \text{mV}$

Neurotransmissió: comunicació entre neurones

36 / 76

• Inhibició: Neuroreceptors GABA: $\tau = 10 \text{ ms}, V_{syn} = -70 \text{mV}$

Dinamica mononeuronal Aplicació: entendre l'Estimulació Cerebral Profunda

Malaltia de Parkinson

S'associa a:

- Canvis en els patrons de disparament de les neurones.
- Dèficit de dopamina (neurotransmissor).
- Patrons de sortida patològics i prou forts dels ganglis basals inhibeixen l'activitat motriu.

Algunes neurones dels ganglis basals mostren:

- Més sincronització.
- Més activitat de tipus *bursting* (ràfegues).

Dinamica mononeuronal Aplicació: entendre l'Estimulació Cerebral Profunda Estimulació Cerebral Profunda (DBS)

Deep Brain Stimulation

Dinamica mononeuronal Aplicació: entendre l'Estimulació Cerebral Profunda

Model xarxa: tàlem

Model construït en base a dades sobre connectivitat (qui es connecta amb qui, i de quina manera -exc, inh-), morfologia (quina mena de canals iònics són habituals a cada regió),...

TC, tàlem.

$$\begin{array}{ll} C_{m} v_{Th}' &= -I_{L} - I_{Na} - I_{K} - I_{T} - I_{\text{Gi}->\text{Th}} + I_{\text{SN}} \\ h_{Th}' &= (h_{\infty}(v_{Th}) - h_{Th})/\tau_{h}(v_{Th}) \\ r_{Th}' &= (r_{\infty}(v_{Th}) - h_{Th})/\tau_{r}(v_{Th}). \end{array}$$

Entrada SensorioMotriu:

$$\mathbf{I}_{SM} = i_{SM} H(sin(2\pi t/\rho_{SM})) \left(1 - H(sin(2\pi (t+\delta_{SM})/\rho_{SM}))\right).$$
Toni Guillamon (MA1-UPC) El cervell vist matemàticament CLS, 29/9/2011 43/76

Image: Problem 1 Production of Constraints Model xarxa: nucli subtalàmic i globus pàl.id STN, nucli subtalàmic. $C_m v'_{Sn} = -l_L - l_{Na} - l_K - l_T - l_{Ca} - l_{Ge->Sn} + l_{DBS}$. $l_{DBS} = i_{DBS} H(sin(2\pi t/\rho_{DBS})) (1 - H(sin(2\pi (t + \delta_{DBS})/\rho_{DBS}))). GP, globus pàl.id: equacions similars.$

Aplicació: entendre l'Estimulació Cerebral Profunda Dinamica mononeuronal Conclusions del model (I) entrada des del nucli estriat EXCITACIÓ • Es discuteixen escenaris i GPe prediccions associades (p. entrada excitatoria ex., ocurrència de ràfegues de rebot rítmiques en GPi STN Tàlem, TC certes cèl.lules del TC en els estats de Parkinson i DBS reducció dràstica gràcies a • L'estimulació d'alta fregüència de la DBS) I'STN regularitza, en el model, • Demostren com la DBS pot l'activitat GPi, i això restaura la fer augmentar les taxes capacitat de resposta de les TC, tot i de disparament de les la creixent freqüència i amplitud de cèl.lules diana, en lloc de la inhibició de GPi cap al tàlem que silenciar-les. també s'observa. ・ロト・日本・モト・モー シック Toni Guillamon (MA1-UPC) 47 / 76 El cervell vist matemàticament CLS, 29/9/2011

Resposta 1: Xarxes de neurones d'integració i disparament

Xarxes

Ingredients bàsics: Integrate & fire + sinapsis acurades

Xarxes de neurones d'integració i disparament (Izhikevich, 2005)

Xarxa de 10¹¹ neurones i quasi 10¹⁵ sinapsis, semblant a les dimensions del cervell. Representa 300x300 mm² de superfície talamocortical d'un mamífer.

Fronteres i reptes computacionals:

- Un sol segon de simulació va ocupar un *cluster* **Beowulf** de 27 processadors (3GHz cadascun) durant 50 dies.
- Només per emmagatzemar els pesos sinàptics, caldrien 10000 terabytes (més del que disposa Google!). En lloc de desar les connexions sinàptiques, es regenera l'anatomia cada pas de temps (1 ms).

Xarxes de neurones d'integració i disparament (Izhikevich, 2005)

50 dies en simular 1 segon amb 27 processadors de 3GHz...

Quants processadors caldrien per simular-ho en temps real? Com s'actualitzaria això amb la *llei de Moore*?

	Data		Nombre proc.	/	/elocitat proc.		
	1 de gener de 2	006	116640000		3 GHz		
	1 de juliol de 20	007	58320000		6 GHz		
	1 de juliol de 20	010	14580000		24 GHz		
	1 de juliol de 20	013	3645000		96 GHz		
	1 de juliol de 20	016	911250(*)		384 GHz		
	1 de juliol de 20)22	56954		6144 GHz		
	1 de juliol de 20)28	3560		98304 GHz		
	1 de juliol de 20	046	1	4(02653184 GHz		
Més in	formació a: TOP	150		•	ㅁ › 《큔 › 《콜 › 《콜 ›]	E	50
Toni Gu	uillamon (MA1-UPC)	EI	cervell vist matemàticament		CLS, 29/9/2011	. 4	55 / 76

Resposta 2: per què no estudiem millor la connectivitat, agrupem les neurones en *clusters*,...?

Xarxes

Connectivitat estructural (geometria de les fibres), connectivitat funcional (correlacions), i connectivitat efectiva (flux d'informació).

Patrons de connectivitat

Xarxes estructurals del cervell

• Grups d'àrees corticals unides densament i recíprocament, que estan globalment interconnectades.

Xarxes

- Patrons de connectivitat ni completament regulars ni completament a l'atzar, xarxes a gran escala presenten atributs de les xarxes petit-món (alts valors dels coeficients de clustering, camins característicament curts,...)
- Identificació i classificació dels concentradors de xarxa (hubs), regions del cervell altament connectades i centrals.
- Metodologies no invasives de difusió d'imatges.

Patrons de connectivitat

Xarxes neuronals funcionals i efectives

Connectivitat funcional

- Basada en la coherència o correlació entre les regions corticals, mostren també atributs de xarxes petit-món.
- Identificació dels centres funcionals i organització fractal de les xarxes funcionals del cervell.

Connectivitat efectiva

- Models de covariància detecten diferències significatives en la connectivitat efectiva entre diferents regions i en diferents tasques cognitives.
- Causalitat de Granger en sèries temporals de EEG, així com fMRI detecta interaccions dirigides entre els elements neurals en tasques cognitives i conductuals.
- Combinació d'estimulació magnètica transcranial (EMT) amb ressonància magnètica funcional (RNMf) permet pertorbacions localitzades de les xarxes cerebrals durant tasques concretes. Toni Guillamon (MA1-UPC) El cervell vist matemàticament CLS, 29/9/2011 58 / 76

Xarxes

Patrons de connectivitat

Interrelacions entre la connectivitat estructural, funcional i efectiva

La **relació entre la connectivitat anatòmica, funcional i efectiva** en l'escorça representa un repte significatiu per a l'actual neurociència teòrica. Dos principis possibles que enllacen les diferents maneres de connectivitat cerebral són la **segregació** (neurones i àrees del cervell especialitzades) i la **integració** (activació coordinada de poblacions neuronals).

El **treball futur** probablement inclourà l'anàlisi paral.lela dels mapes de connectivitat estructural del cervell humà i dels patrons de connectivitat funcional i efectiva registrats en diverses condicions de repòs o d'activació cognitiva.

Connectivitat cerebral: el connectoma

Tractament de dades, reconstrucció de xarxes.

El connectoma humà. Arquitectura de les fibres del cervell humà per imatgeria per difusió (esquerra), una xarxa estructural reconstruïda (mig) i la localització del nucli del cervell, que és el "hub" més densament connectat (dreta) [Hagmann et al. (2008)]. Per saber-ne més i entretenir-s'hi: Human Connectome Project Article sobre el **Connectoma** a la *Scholarpedia* Actuació de Sebastian Seung a TED

Camp mitjà Poblacions de neurones

Les equacions de Wilson-Cowan

Provenen de la física estadística.

Adients per al tractament de grans **poblacions** de neurones que presenten algun tret d'**homogeneïtat**.

$$\begin{cases} \tau_E \frac{dr_E}{dt} = -r_E + (k - \rho_E r_E) S_E(c_1 r_E - c_2 r_l + P(t)) \\ \tau_l \frac{dr_l}{dt} = -r_l + (k' - \rho_l r_l) S_l(c_3 r_E - c_4 r_l + Q(t)) \end{cases}$$
(5)

- *E*(*t*) proporció de cèl.lules excitadores que emeten impulsos per unitat de temps en l'instant *t*
- *I*(*t*) proporció de cèl.lules inhibidores que emeten impulsos per unitat de temps en l'instant *t*
- $r_x(t)$ mitjana de x(t) en un interval adequat

Hi ha altres maneres de derivar equacions de camp mitjà però aquest model és el més conegut i històricament rellevant,

Toni Guillamon (MA1-UPC)	El cervell vist matemàticament	CLS, 29/9/2011	64 / 76
--------------------------	--------------------------------	----------------	---------

Camp mitjà Percepció biestable Equacions bàsiques ● Variables de *firing-rate* (→ Equacions de Wilson-Cowan): $\begin{cases} \tau \dot{E_1} = -E_1 + f(-\beta E_2 - \phi_a a_1 + l_1 + n_1(t)), \\ \tau \dot{E_2} = -E_2 + f(-\beta E_1 - \phi_a a_2 + l_2 + n_2(t)), \end{cases}$ (6) $\tau \sim$ 10 ms; • β = inhibició creuada; • $\phi_a =$ força de l'adaptació; • $I_{1,2} = \text{estimuls externs.}$ • Funció de guany: $f(x) = \frac{1}{1 + exp(-\frac{x-\theta}{k})}$ (7) <ロ> <圖> < => < => < => < => のへの Toni Guillamon (MA1-UPC) CLS, 29/9/2011 73 / 76 El cervell vist matemàticament

Camp mitjà Percepció biestable Equacions bàsiques...

• Variables d'adaptació :

$$\begin{cases} \tau_a \dot{a_1} = -a_1 + E_1, \\ \tau_a \dot{a_2} = -a_2 + E_2, \end{cases}$$
(8)

 au_{a} \sim 1 s.

• Dinàmica del soroll:

$$\begin{cases} \dot{n_1} = -\frac{n_1}{\tau_n} + \sigma_n \sqrt{\frac{2}{\tau_n}} \xi_1(t), \\ \dot{n_2} = -\frac{n_2}{\tau_n} + \sigma_n \sqrt{\frac{2}{\tau_n}} \xi_2(t), \end{cases}$$
(9)

 $\overline{\xi_i(t)\xi_i(t')} = 0, \, \overline{\xi_i(t)} = 0, \, \xi_i^2(t) = 1, \, \tau_n = 100 \text{ ms.}$

Ajustant els paràmetres a les dades dels individus s'observa que tot se situen prop de la corba de bifurcació.

				E 1940
Toni Guillamon (MA1-UPC)	El cervell vist matemàticament		CLS, 29/9/2011	74 / 76

Camp mitjà Percepció biestable

Equacions bàsiques...

• Variables d'adaptació :

$$\begin{cases} \tau_a \dot{a}_1 = -a_1 + E_1, \\ \tau_a \dot{a}_2 = -a_2 + E_2, \end{cases}$$
(8)

 $au_{a} \sim$ 1 s.

• Dinàmica del **soroll**:

$$\begin{cases} \dot{n_1} = -\frac{n_1}{\tau_n} + \sigma_n \sqrt{\frac{2}{\tau_n}} \xi_1(t), \\ \dot{n_2} = -\frac{n_2}{\tau_n} + \sigma_n \sqrt{\frac{2}{\tau_n}} \xi_2(t), \end{cases}$$
(9)

 $\overline{\xi_i(t)\xi_i(t')} = 0, \overline{\xi_i(t)} = 0, \overline{\xi_i^2(t)} = 1, \tau_n = 100 \text{ ms.}$

Ajustant els paràmetres a les dades dels individus s'observa que tot se situen prop de la corba de bifurcació.

		< □	• ►	• 🗗 •	< ≣	 ◆ 重 → 	æ	৩৫৫
Toni Guillamon (MA1-UPC)	El cervell vist matemàticament				CLS	, 29/9/201	1	74 / 76

